
PMM ~.S.S.R.,vo1.47,No.3,pp. 309-X5,1984 
Printed in Great Britain 

0021-8928/84 $1O.K~+0.00 
0 I.984 Pergamon Press Ltd. 

UDC 62-50 

ASYMPTOTIC SOLUTION OF ONE CLASS OF 
SINGULARLY PERTURBED OPTIMAL CONTROL PROBLEMS* 

G.A. KURINA 

Under certain conditions there is constmcfed and justified an asymptotic expansion 
in powers of a small parameter, of the solution of the problem of minimizing a quad- 
ratic functional on the trajectories of a singularly pertuxbed linear system not 
solved relative to the derivative, with fixed endpoints and fixed time. The limit 

passage, as the small parameter tends to zero, of the solution of the perturbed 
problem to the solution of a degenerate problem is established. 

f. We examine the following classical fixed-time optimal control problem; find a con- 
tinuous r-dimensional function a ($1 minimizing the functional 

I(u)=+ 5 
((z(t), Qz@)>+ (or HuUD)dt (1.1) 

0 

on the trajectories of the equation 

@ + Ei?) i (t) = h ft) $ h. {if% 5 (0) = i, 5 fT) = XT Cl.21 

t (t) ?z R’“, A, B, C t R’” + R”, D : R’ + Rm 

Here P > 0 is a small parameter, T >z 0 is a fixed number, all matrices are constant, R is a 
positive-definite symmetric r X r-matrix, Q is a positive-semidefinite symmetric mxm-matrix, 
matrix A is singular, and the matrix A -t- .& is invertible for sufficiently SIXill E- # 0; 

<._ -> denotes the scalar product, For 

k$ ;I* I+ (J (1.31 

(E is the unit matrix) problem (1.11, (1.2) was anaLyzed in /I/, where the zero approxi- 
mation of the solution was constructed. Equations not solved relative to the derivative are 
encountered, for example, in economics (the aput-output equation /2/f. Using Pontriagin's 
maximum principle i'3/, we arrive at the two-point boundary-value problem 

(A -L EB) r' (1, E) = c+ (t, E) j sit, (b, e); z(0, e) = za (1.41 

Z(T,&) = XT 
(A' - EB') $,'U, e) = Qz (t, E) -C' 21_ (t, e) 
S - DR-ID’, q (t, e) = (ii’ j eB’)-‘cp (t) 

where ~((ff is the adjoint variable and the prime denates transposftion, Here the optimal ton- 
trol takes the form 

u (t, E) = R-‘D’$ (ts E) (1.5) 

2. Let the kernel of matrix A be one-dinensional. Then we can,take it that by nonsing- 
ular transformations of system ii.21 the matrix A can be brought to the form diag (J,Ef, where 
J is the Jordan cell corresponding to the zero eigenvalue. 

of matrix A, 
By q we denote the efgenvector 

corresponding to the zero eigenvalue, and by 
of associated eigenvalues. 

e,, . . ., e, the correspondingchain 
We assume as well that 

C,, = <Gel, %> # 0, Qll = <Qe,, el> # 0 (2.11 

where Cij denotes the element in the i-t& row and j-th column of matrix C, Iiencefoath, for 

*Prikl.Matem.Mekhan., voL.47,~0.3,pp.363-37i,1983 
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the i-th components of the vectors x and Cx we shall use the notation xi and- (Cx)', respect- 
ively: i = 1, 2, . . .; [xl’ is a vector from flm-' obtained from a vector xs R’” by deletion 
of the i-th component; [CP is an (m - 1) X'(m - I)-matrix obtained from the m :< 111 - 
matrix C by deletion of the i-th row and j-th column. 

Let us consider Eq.cl.2) with e = 0, i.e., the unperturbed equation relative to .7' it). 
On the strength of condition (2.1), we express 2' from the algebraic equation and we substit- 
ute the resultant expression in the differential equation relative to [al'. We obtain 

[q = co [z]l f Dou; co [z]’ = [C]- [z]’ - (2.2) 

[%I” ([c’%l’, [Z]‘)lGl, Dou = [Du]” - [ CeJ (Du)“& 

We assume that the degenerate system (2.2) is completely controllable, i.e., 

rank (Do, C, D,, . . ., Cr-‘0,) = m - 1 

and that the condition 

D’e,, # 0 

is fulfilled. Under these conditions, by using the change of variables 

f = [xl1 +eHn, r) = x1 + G’ [xl’ 

(2.3) 

(2.4) 

to lead system (1.2) to the form 

E’ = (CO + 0 (8)) 5 + (DO + 0 (e)) u, q’ = (CC,, + 0 (e)) q + 

(Duy + 0 (8) u)/(ePv) 
.=(-I)** (B(A'B)P-lel,e,), p= min i 

<B(A'Bji-'e,,e )+I n 

we can show that system (1.2) is completely controllable for sufficiently small e#O. The 
existence of the number p > 1 follows (*) from the condition of invertibility of the matrix 
A + eB for sufficiently small e. For matrices A and B of form (1.3) the controllability 
of the perturbed system has been proved in /4/. Using the result in /5/ we can prove that 
under the assumptions made on the properties of matrices Q and R, a boundary-value problem 
of type (1.4) has auniquesolution if and only if system (1.2) is controllable. For suffic- 
iently small e#O the complete controllability of system (1.2) follows from conditions (2.1), 
(2.3), (2.4) and, therefore, the optimal control (1.5) has been defined uniquely. 

3. System (1.4) is singularly perturbed /6/. We shall seek the asymptotics of the 

solution of problem (1.4) for an arbitrary integer q> 0 in the form 

X 6 e)=; j$ e’(xj (t) f njX (70) + QjX (Tl)) -I- rpz (h e) 
(3.1) 

93 

70=-f- t-T 
EP ’ 71 =,p 

where all functions are continuously differentiable, njs(ra),n&(r,) are boundary-layer func- 

tions in a neighborhood of t = O,Qp(z,),Q&(rl) are boundary-layer functions in a neighbor- 
hood of t = T, while the remaining terms rfl (t,e), r&(t,e) have the estimates 

1 ‘fl (6 E) 1. 1 r& k 6) 1 < c@+’ 
(3.2) 

I rqh’x (t, e) 1, 1 rq’$ (t, e) I < cEQ+l-p 

Here and further c denotes a positive constant not dependent on e, t,r,s; 1 * 1 denotes a norm. 
The next lemma is easily proved. 

Lemma 1. In order that the functions x(t, e),Ip (t,e), having expansions (3.1) with esti- 

mates (3.2) for any integer q> 0, be a solution of system (1.4), it is necessary and suffic- 

ient that for j = 0, 1, . . ..q the functions z)(t), q,(t) be solutions of the system of equations 

*) For example, see, ZUBOVA S.P., Singular perturbation of linear differential equations not 

solved relative to the derivative. Dissertation for the scientific degree of Candidate of 

Physico-Mathematical Sciences, Voronezh. State Univ., 1973. 
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(3.3) 

the functions up, n,$(rO) be solutions of the system of equations 

A 
dnp (7.0) dn+,+ (TO) 
T=-B dr + Cnj-pJ (TO) + Snj-*$ (TO) 

0 

A’ 
dn 4 (To) 

+=-B' dr - C’nj-p$ (~0) + Qnj-pr (TO) 
0 0 

(3.4) 

the functions Q,z(t,). Qp#(zl) satisfy system (3.4) with the substitution of ro by R. lljs (To) 

by C', 5 (rl)r nA'(ro) by Q,$ (rl), and the remaining terms r4z (t, E), r& (t, e) satisfy the system 

(A i- W r9'" (t, a) = Crg (t, e) + Sr& (t, e) + F, (t, E) (3.5) 

(-4' + sB')rg'$ (t. s) = Qra (t, E) - C’r& (t, E) + F, (t, E) 

F1(t,e)= - eo+lBx,' (t) + C f: Ej (n+‘J (‘JO) + Qjx (~1)) + 
j-4+1-_p 

P 

CP 1c Ej (nj9 (TO) + Qj$ (XI)) - E’+‘-~B 
dn = (%I) 

&, + 
dQ = 6) 

& 
1 

9=9+1--P 

F, (t, E) = - eQ+'B'qq' (t) - c’ c &j (nj+ (70) + QjV (~1)) + 
j=q+l-p 

Q jx$_p ttj (II+ (To) + Qjs @I)) - EQ+~-PB’ (F+ v) 

In all expressions the functions with indices i<O are taken equal to zero. 
The function .r(t,e) must satisfy the boundary conditions from (1.4). Therefore, the 

boundary conditions for the functions occurring in expansion (3.1) are naturally specified in 
the following manner: 

IO (0) + IIOS (0) = 2, rj (0)-t l@(O) = 0, i # 0 (3.6) 

zo 6’) + Qos (0) = sT, xj 6’) + Qj 3 (0) = 0, i # 0 

(3.7) 

Let us find the first term of asymptotics (3.1). Analogously to /7/ we can show that 
systems (3.4) are solvable for j = 0,1, . . ..p - 1 and their solutions have the form 

njx (70) = kio (- I)+” b,' (TV) (A’B)j-k el 

IIj’J’(zo) = L& (- l)jek bk2(zo) (Al?')+k en 

where b~l(r,),b,"(r,) are as yet unknown continuously differentiable functions. The equalities 

<-B dnpg (To) + cnox (To) + SrI& (To), en> IO 

dn,* (To) <-B’ dro - c’no’lp (~0) + Ql-b (TO), e,> r0 

are the solvability conditions for system (3.4) with j = p. From the latter relations, with 
due regard to the preceding expressions, and from the definition of number p we obtain the 
system 
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In the same way we find that QPr(%) = a~'@~) el, &,+ (TV) = no9 (~~)e,,, where uol (To), (zo5 (t,) sat- 
isfy exactly the same system as for the functions b,l(r,), 6,Z(z,). From (3.6) we have 

z,, (0) = 2 - 6P' (0) a,, ro (T) = XT - no1 (O)e, 8, 3 . 1 

Hence we define [zO (O)]l, [zO (T)]'. 

Lemma 2. Under the assumptions made on the properties of the matrices the system 

Ay’ = Cy + Sz, A’z’ = Qy - C’a (3.10: 

with the zero boundary conditions [y (O)]* = [y (T)l'= 0 is uniquely solvable. 

PrOOf. We multiply the first equation of system (3.10) scalarly by L and the second by 
y and we aad the results. Integrating the resulting equality with respect to t from 0 to T 
and accounting for the zero boundary conditions, we find 

! ((Sz, z) + <Qv,I/)) dt=O 
I) 

Because of the positive semidefiniteness of matrices S,Q from the last equality follows 
Sz = O,Qy= 0. Therefore, from system (3.10) we have 

Ay’ = Cy, A’z’ = - C’z 

From the first equation of this system, by virtue of the zero boundary condition for y, we 
obtain Y (t) zz 0. From the second equation we obtain 

zn = - (IZI", ICeJ">/C,1 

Taking this relation into account, we have 

tsz, I> = tD,R-'D~'[z]n, [i]") 

By @ (t,$ we denote the fundamental matrix for matrix co. Then 

]z (01" = @' (0, t) lz @)I" 

i <St, z) dt = j <D&9; [z (t)]“, [z (t)ln, dt = 

I o 
t@ (0. t) D,R-hD;W (0, t) [I (O)]“, [I (O)]“, dt = 0 

0 

From the latter equality, because of the complete controllability of the degenerate system 
(2.2) and the positive definiteness of matrix R-l we have [z(0)In= 0. Hence [z(t)lnzO.:"(t)=(). 

i.e. z (t) G 0. 

Leuuna 3. If 

has no nontrivial 

where g(t) is any 
a unique solution. 

the homogeneous problem 

y' = cy, My (0) - Ny (T) = 0 

solution, then the inhomogeneous problem 

y' = Cy + g(t), My (0) - Ny (7') = d 

prescribed continuous function and d is a prescribed constant vector, has 

Proof. The general solution of the inhomogeneous equation is given by the formula 

t 
Y (1) = erp (ct) Y, + \ exp (C (t - 8)) g (4 (is 

0 

and satisfies the prescribed condition if and only if 

T 

MY,--N (=P (CT) vo+ 1 exp (C(T -s))gb)ds) = d 
0 

Since the homogeneous problem does not have a nontrivial solution, from /8/ it follows that 

the matrix ,+f- Nexp(CT) is not singular. Therefore, y. is uniquely determined from the pre- 

ceding equation. Hence, the solution of the inhomogeneous problem has been uniquely deter- 
mined. The assertion of the last lemma was proved in /8/ for d= 0. 

We can now provetheunique solvability of the system 

Ay’ = Cy + Sz f g,, A’z’ = Qy - C’z + g, 

with prescribed boundary conditions [y(O)]'. [y(T)]'. If in this system we pass to the coordin- 

ate notation, from the finite relations we can express yl.zn in terms of /!A', ]z]^, RI? R1. 
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Substituting the resultant expressions into the system of differential equations relative to 

functions lyl', lzl”, we arrive at a system of inhomogeneous differential equations for the func- 
tions [Yll, lzl" with the prescribed boundary conditions (Y (O)l', lY (T)l'. The unique solvability 

of the homogeneous boundary-value problem for [yl', [zl” follows from Lemma 2. By virtue of 

Lemma 3 the inhomogeneous boundary-value problem for [y]',[z]" is uniquely solvable. Therefore, 

the original boundary-value problem is uniquely solvable. 
On the basis of the preceding arguments, x0 (t),qo (t) are uniquely determined from system 

(3.3). From (3.9) we now can find b,’ (0), a,’ (0). One condition for system (3.8) is well known, 
while a second is the condition that b,‘(z,) tands to zero as zO+ +co. Thus, b,' (z,), b,' (20) 
have been determined, and, hence, also II02 (rO), n,$ (To). The functions Q. 5 (2,), Q,$ (Tr) are 
found analogously. Thus, the first term of the asymptotics (3.1) has been constructed. 

Lemna 4. Let 4>P. For any j, j = 0, 1,. . ,, q-p, from the equations in Lemma 1 we can 
uniquely determine the functions zj (t)* *j tt)T njx bO)r nj$($)* Qjst21), Qj$ (%I; the equations for 

the functions IIj+pS (TO), fij+pq (rO), Qj+pr (rl), Qj+p'# @I) are solvable, the components of HP (%A 
I'I,$ (zO) have the form r”‘p (To), the components of the functions QP (rr), 0111 h) have the 

form eLrlq (rI), where p (d q (%) are certain polynomials of both arguments, a = ((G,JZ + 
Qn%J'* 1 v 1-r. 

The differential equations for determining the functions bki(t,,), a:(~,) (i = 1,2) are found 
from the solvability conditions for the equations for KX+pz (To), nH+p* (TO)? Qlr+$ (r,), Qk+plp @A. 
Therefore, in order to find all the boundary-layer functions in expansions (3.1) it is neces- 
sary to write these expansions to within @J+P. 

4. Now we can prove the estimates (3.2) for the solution of system (3.5) with conditions 
(3.7). To do this we split the system (3.5) into two systems: 

(E +e[B]“‘)[z’]‘=[C]“‘[z]’ j [Sy[y]n+ 

IF1 - eBel (z’)’ + CeIsl f Se,,ynln 

(E i E [B’]*“) [y-l* = [Q]” [z]l - [c’]l” [yin + 

[Fz - EB'e,,(y*)'+ Qelzl- C'e,,yn]l 

E (Bz')~ = (Gz)~-+ (Sy)" + F,“, e (B’y’)l = (Qz)’ - (C’y)’ + F,* 

(4.1) 

(4.2) 

Here 
z (t, E) = rq.z (t, e), y 0, E) = r,* (t, E) 

From (4.2) we express zl, Y* and we substitute the expressions obtained into (4.1). We 
arrive at a system of form 

(4.3) 

We do not write out the exact expressions for the coefficients of the last system because of 
their cumbersomeness. When estimating the remainder term we denote by ft (P, y", e, t) a vector- 
valued function of dimension 2 or m - 1, for which the inequalities 

I fi W, Y”t e, t) 1 < Cc (1 z1 (h E) k[o. T] i 1 Y”(t, E) 1~10, T, )+ Ceq+l-p (i = 1, 2) 

are valid. (From the form of functions F,(t,&),F2(t, E) and the properties of the functions 
occurring in expansions (3.1) it follows that the inequalities I Fi (t, e) I g ceQ++P (i = 1, 2) 
hold). By virtue of Lemma 2, the boundary-value problem (3.5), (3.7) is uniquely solvable 
when E = G. Therefore, system (4.3) with prescribed boundary conditions Iz (0, &)I’, [z (T, e)l* is 
uniquely solvable for sufficiently small E and, using the Green's function 
tion can be written as 

G(t,s,e), its solu- 

It can be proved that the estimates 

are valid. In expression (4.4) we apply the integration by parts formula to the terms con- 
taining the derivatives (allowing for the discontinuities of the function G&s,&) when t=s). 
Further, taking into account the estimates for functions Q,x(-T/F?), n,x(T/C') and the esti- 
mates for the function G(t,s,e), we get that 
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We pass on to 
we can reduce them 

Iz (t, e)]’ = fi (z’, yn, E, 9, [y (6 e)ln = f, (zl, y”, E, t) (4.5) 

Eqs.(4.2). Using the preceding relations and the definition of number p, 
to the form 

(Z~).=~z1j~y~~+~ri(Z',y",e,t) (4.6) 

(v")' =+ - 3 y" + Sf*(Zl, ykt) 

If in this system we treat fl,fi as the inhomogeneity, then the homogeneous system with pre- 
scribed boundary conditions zl(O,e), z'(T,e) is uniquely solvable and we can write the solu- 
tion of system (4.6) with prescribed boundary conditions ~'(0, E), z’(T, e), using the Green's 
function G (t,s,e’), in the form 

From the form of the function G (t. s, Ep) follows the validity of the inequality 

By virtue of this inequality and the form of the matrix exp (Kt) IV’ we have 

Z1 (t, E) = fl (Z1, yn, e, t), y” (t, e) = f2 (Z', y", E, t) 
whence from relations (4.5) it follows that 

I r'l Z (L e) Icto,rh I r& (t, e) Ic[~,TI < ce@+*-P 

From the differential equations for r,s(t,~), r,$(t,e) we obtain the estimates 

I rq’x 0. e) Icm, m I rq’$ (t, e) Ic[~, TI < ce*+*-*p 

In order to obtain estimates (3.2) we need to write the expansions for x,$ to within E*+P 

and to take advantage of the estimates proved above for rq px (t, e), rqcpg (t, F) (in the preceding 
inequalities write q +p instead of q). 

5. Using the asymptotics for the function +((t,e) we obtain the asymptotic expansion of 
the optimal control (1.5) in a power series in E. Since the asymptotics for the optimal con- 
trol and the optimal trajectory have been constructed, we can write an asymptotic expansion 
in powers of e for the minimal value of the functional 

4 

I(U) = Z; eiIj + 0 (e*+l) 
j=0 

We investigate the solution's behavior as e +O. From the form of the asymptotics it follows 

that z(t, e)+% (t),$ (t, e)-%(t) in the metrics of CITl, T,l (O<T,< Tz<T) and of Ll [O, T1. In 
addition, since HI,, z (~,,)l' = @&,)ll z 0. [II,@ (ro)l” = [Q& (q)l” = 0, we have LZ (t, e)l’ --t ~GI W7 
!Ip (t, e)l” + bh WI” in the metric of C 10, 2’1. 

We pose a degenerate control problem. Find a control u(t) minimizing the functional 

T 

r(u)=+ 5 (<a V), Qt (4) + 0~ W, Ru (4)) dt (5.1) 

0 

on the trajectories of the equation 

AZ' (t) = CZ (t) + Du (t), [Z (O)]’ = h”ll, tE (T)I’ = [z=l’ (5.2) 

Using the method of proof of the sufficiency of the optimality conditions in /3/t we can Prove 
that the optimal control ii(t) for the degenerate problem is determined from the maximum prin- 

ciple 
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--‘i&i (t), Rii (t)) -t- (q,, (t), Dii (t)> = maxu (--'/z<uv Ru> + ($0 WY Du)) 

Since in the problem being analyzed no constraints are imposed on the control, from the pre- 
ceding relation we find ii (t)= R-'D'$, (2). It happens here that z(f)= x0(t). From the form 
of the optimal control for the degenerate problem we obtain an assertion on the tending of 
the perturbed problem's solution to the solution of thedegenerateone,inthemetricsof C [T,, 
T,l (0< TIC Tt< T) and of L, [O, Tl. Moreover, the minimal value of the perturbed problem's 
functional Z (u)tends to the minimal value of the degenerate problem's functional I (u) = I, 

as e-to. Thus, we have proved the following theorem. 

Theorem. Under the fulfillment of the above-listed conditions imposed on the matrices 
A,B,C,D,Q,R, fortheproblem (1.1)) (1.2) there exist asymptotic expansions for the optimal 
trajectory, the optimal control and the minimal value of functional (1.1) in powers of E. 
As E--+0 the solution of the perturbed problem (l.l), (1.2) tends, in the appropriate norms, 
to the solution of the degenerate problem (5.1), (5.2). 

6. We apply the proposed algorithm for constructing the asymptotics to the example from 
/l/ with e= 0.1 

1 

1(U)=+ 
s 
(2(21)2 + 4 (z")Z + (u)Z) dt 

0 
3 p. (z')' = 0.5 21 - 1.5 22 - u, l'(0) = 3, 21 (1) = - 1.3 

(2”)’ = 1&‘, 2% (0) = 4, 2% (1) = 0.5 

The calculation results are shown in the Fig.1. The dashed 
curve corresponds to the degenerate solution f' (1) ; curve I cor- 
responds to the solution in the zero approximation (to with- 
in O(i)) with due regard to the boundary layers; curve 2 cor- 
responds to the solution in the first approximation (to within 

0 (E )) i curve 3 corresponds to the exact solution I1 (t, e). It 
turned out that the solution in the second approximation (to 
within O(e?)) practically coincides with the exact solution. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Fig.1 

We remark that in /l/ only the zero approximation was 
constructed, with the use of solutions of the Riccati equation. 
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